
Journal of Mathematical Chemistry Vol. 37, No. 4, May 2005 (© 2005)
DOI: 10.1007/s10910-004-1099-7
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In order to read a DNA sequence, we propose a method which induces the concept
of DNA graph. In this paper, by discussing the adjoints of DNA graphs, we obtain
more DNA graphs from known DNA graphs.
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1. Introduction

Since Watson and Crick [1] proposed the helical structure of DNA, many
problems about this structure are posed. An important problem is how to read a
DNA sequence, one method is hybridization and reconstruction. All short frag-
ments of nucleic acids (oligonucleotides) of length l (a library composed of 4l

subchains) are used in the hybridization experiment and thus, the formation of
the complex indicates the occurence of a sequence complementary to the oli-
gonucleotides in the DNA chain. It is detected by a nuclear or spectroscopic
detector. As a result of the experiment one gets a set (called spectrum) of all
l-long oligonucleotides which are used to hybridize with the investigating DNA
sequence of length n.

Now raising a new problem: in what order to reconstruct these fragments?
Lysov et al. [2] proposed a method which is to formulate the problem of find-
ing original DNA sequence as looking for a Hamiltonian path. Later, Pevzner
et al. [3] refined this problem as looking for a Eulerian trail. The above approach
raised some interesting questions in graph theory. They are concerned with the
labeling graph which will be referred to as DNA graph. About previous results
please see [2–5].

However, when we use obligonucleotides to hybridize with the investigating
DNA sequence, we may make mistakes. How to check whether the operation of
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the experiment is proper? We transfer this problem to the conception of graph
theory as follows: how to identify a graph being a DNA graph ? In this paper, by
discussing the adjoint of DNA graph, we obtain more DNA graphs from known
DNA graphs. In this way, we obtain more checking methods. The organization
of the paper is as follows. In section 2, for convenience, we present some defini-
tions. Section 3 is devoted to the main results.

2. Preliminaries

In this paper, when we say a directed graph, we means a directed 1-graph
without directed loops. Because the purpose of our study is to look for a
sequence of A, T, G, C, we consider directed loops and p-graphs (p � 2) is val-
ueless for the arrangement of a DNA sequence.

Definition 2.1. [6] A directed graph is a p-graph if given any ordered pair x, y of
vertices (x possibly equal to y), there are at most p parallel arcs from x to y.

Definition 2.2. [4] Let k > 1 and α > 0 be two integers. We say that a directed
graph D= (V , A) can be (α, k) – labeled if it is possible to assign a label
(l1(x), . . . , lk(x)) of length k to each vertex x of D such that

1. li(x) ∈ {1, . . . , α},∀i∀x ∈ V ;
2. all labels are different, that is (l1(x), . . . , lk(x)) �= (l1(y), . . . , lk(y)) if

x �= y;
3. If x �= y, (x, y) ∈ A⇔ (l2(x), . . . , lk(x)) = (l1(y), . . . , lk−1(y)).

Definition 2.3. [4]. Given two integers k > 1 and α > 0, Lα
k is the class of directed

graphs that can be (α, k) – labeled.

Definition 2.4. [4]. A directed graph D is a DNA graph if and only if ∃k>1 such
that D ∈ L4

k.

Definition 2.5. [4]. The adjoint D′ = (V , U) of a graph D = (X, V ) is the directed
graph with vertex set V and such that there is an arc from a vertex x to a ver-
tex y in D′ if and only if the terminal endpoint of the arc x in D is the initial
endpoint of arc y in D.

A graph D′ is an adjoint if there exists some graph D such that D′ is the
adjoint of D.

Definition 2.6. Let D′ be the adjoint of D. If D is isomorphic to D′, we call D

self-adjoint.
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Definition 2.7. Define Svj ,m,i as follows:

V (Svj ,m,i) = {vj , x1, x2, . . . , xm, y1, y2, . . . , yi},
A(Svj ,m,i) = {(x1, vj ), (x2, vj ), . . . , (xm, vj ), (vj , y1), (vj , y2), . . . , (vj , yi)},

where m � 0, i � 0.

Let Cn be a directed n-cycle:

V (Cn) = {v1, v2, . . . , vn},
A(Cn) = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)},

where n � 2. Then, we paste Svj ,m,0 to Cn such that V (Svj ,m,0) ∩ V (Cn) = {vj },
where j = 1, 2, . . . , n, we obtain a directed graph, denoted C(v1, v2, . . . , vn).

For example, one of C(v1, v2, v3) is as follows:

V (C(v1, v2, v3)) = {v1, v2, v3, x11, x12, x21, x22, x31},
A(C(v1, v2, v3)) = {(v1, v2), (v2, v3), (v3, v1), (x11, v1), (x12, v1),

(x21, v2), (x22, v2), (x31, v3)}.

Define Ai as follows:
A0 = Cn, a directed n-cycle; A1 = C(v1, v2, . . . , vn); defined above. Suppose

Ai is constructed, where i � 1, we construct Ai+1 as follows:
For every vertex u ∈ V (Ai) with d+Ai

(u)=1 and d−Ai
(u) = 0, we paste Su,m,0 at

vertex u, ∀u ∈ V (Ai), m � 0, for different u ∈ Ai , m may be different, V (Su,m,0)∩
V (Ai) = {u}.

Definition 2.8. [7]. The converse
←
D of D is the directed graph obtained from D

by reversing the orientation of each arc.
The main results of this paper are as follows:

Theorem 3.1. Let {D} denote the set of DNA graphs and {D′ } denote the set of
adjoints of DNA graphs in {D}, then {D′ } is a proper subset of {D}.

Theorem 3.7. The connected self−adjoints are An and
←
An, where An is defined in

definition 2.7,
←
An is defined in definition 2.8.

3. Results

Theorem 3.1. Let {D} denote the set of DNA graphs and {D′ } denote the set of
adjoints of DNA graphs in {D}, then {D′ } is a proper subset of {D}.
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Proof. Let D be a DNA graph and D
′

its adjoint. Suppose u, v ∈ V (D) and
a = (u, v) ∈ A(D). Since D is a DNA graph, by definitions 2.2 and 2.4, we have

l(u) = (l1(u), l2(u), . . . , lk(u)),

l(v) = (l2(u), . . . , lk(u), lk(v)),

we define the label of a ∈ V (D′) as follows:

l(a) = (l1(u), l2(u), . . . , lk(u), lk(v)).(∗).
In the following, we prove that by (*) we give D′ a proper (4, k + 1)-labeling,
hence, D′ is also a DNA graph.

Let x, y, u, v ∈ V (D), x �= v, a1 = (x, y) ∈ A(D) and a2 = (u, v) ∈ A(D).
Since x �= v, we have l(a1) �= l(a2).

Case 1. y = u. Let l(x) = (l1(x), l2(x), . . . , lk(x)), by definition 2.2 we have

l(y) = (l2(x), . . . , lk(x), lk(y)),

l(v) = (l3(x), . . . , lk(x), lk(y), lk(v)).

By (*), we obtain the labels of a1 ∈ V (D′) and a2 ∈ V (D′) as follows:

l(a1) = (l1(x), l2(x), . . . , lk(x), lk(y)),

l(a2) = (l2(x), . . . , lk(x), lk(y), lk(v)).

By Definition 2.2 we have (a1, a2)∈A(D′), which is what definition 2.5 requested.
If (a2, a1) ∈ A(D′), by definition 2.2 we have

(l3(x), . . . , lk(x), lk(y), lk(v)) = (l1(x), l2(x), . . . , lk(x)),

thus, l(v) = l(x), which contradicts with definition 2.2. Thus, (a2, a1) is not an
arc of D′, which is what definition 2.5 requested.

Case 2. y �= u.
Similar as case 1, we obtain

l(x) = (l1(x), l2(x), . . . , lk(x)),

l(y) = (l2(x), . . . , lk(x), lk(y)),

l(u) = (l1(u), l2(u), . . . , lk(u)),

l(v) = (l2(u), . . . , lk(u), lk(v)),

l(a1) = (l1(x), l2(x), . . . , lk(x), lk(y)),

l(a2) = (l1(u), l2(u), . . . , lk(u), lk(v)),

where y, u ∈ V (D), a1, a2 ∈ V (D′).
Since y �= u, by definition 2.2 we have

(l2(x), . . . , lk(x), lk(y)) �= (l1(u), l2(u), . . . , lk(u)).
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By definition 2.2 there is no arc from a1 to a2 in D′, which is what definition 2.5
requested. Thus, D′ is a DNA graph.

Define W ′ as follows:

V (W ′) = {x, y, z, u},
A(W ′) = {(x, y), (y, z), (z, u), (u, x), (x, z)}.

We label the vertices of W ′ as follows:

l(x) = (2, 1, 1), l(y) = (1, 1, 1),

l(z) = (1, 1, 2), l(u) = (1, 2, 1).

Thus, W ′ is a DNA graph.
Claim. There is no DNA graph whose adjoint is W ′.
By contradiction. Suppose W ′ is the adjoint of DNA graph W . Because

there are 4 vertices in W ′, by definition 2.5 there are exactly 4 arcs in W . Let
A(W) = {a1, a2, a3, a4}. Because the directed triangle xzu is contained in W ′, by
definition 2.5 we have

a1 = (v1, v2), a2 = (v2, v3), a3 = (v3, v1).

By the symmetry of v1, v2, v3, we have four cases to consider:
Case 3. a4 = (v4, v5).

By definition 2.5 a4 corresponds to an isolated vertex in W ′, which is a con-
tradiction.

Similarly, we can prove that cases 4–6 are impossible.
Case 4. a4 = (v4, v1).

Case 5. a4 = (v1, v4).

Case 6. a4 = (v2, v1).

The theorem follows.

Remark. Theorem 3.1 provides a general method, using it we obtain more DNA
graphs from known results, as demonstrated in theorems 3.3 and 3.4.

By theorem 3.1 the following corollary is obvious.

Corollary 3.2. Let Di+1 be the adjoint of Di , where i = 0, 1, 2, . . . , n, n is an
arbitrary integer number. If D0 is a DNA graph, then Dn is a DNA graph.

Theorem 3.3. The adjoint of a directed path is a DNA graph.

Proof. Claim. Pn is a DNA graph, where Pn is a directed path with n vertices.
Let Pn = (v1, v2, . . . , vn). We label vertex vi as follows:

(1, 1, . . . , 1, 2, 2, . . . , 2),

where the number of 1 is (3n+ 1− i) and the number of 2 is (i − 1).
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It is easy to see that all labels are different, and there exists an arc from vi

to vi+1. We claim that there is no arc (vi, vj ) ∈ Pn,where |i − j | � 2. In fact,
without loss of generality, let j � 2+ i. We have

(l2(vi), . . . , l3n(vi)) = (1, 1, 1, . . . , 1, 2, 2, . . . , 2),

where the number of 1 is (3n− i) and the number of 2 is (i − 1).

(l1(vj ), . . . , l3n−1(vj )) = (1, 1, . . . , 1, 2, 2, . . . , 2),

where the number of 1 is (3n + 1 − j) and the number of 2 is (j − 2). Since
j � 2+ i, we have

3n− i > 3n+ 1− j.

By definition 2.2, there is no arc from vi to vj . By theorem 3.1 the theorem
follows.

Theorem 3.4. The adjoint of a directed cycle is a DNA graph.

Proof. Claim: Cn is a DNA graph, where Cn is a directed cycle.
In this proof, if i≡ 0 (mod 4), we denote i≡ 4 (mod 4). Define Cn=

(v1, v2, . . . , vn).

Case 1. Suppose 4|n, let n = 4m. We label the vertices of Cn as follows:
Step 1: Define

(l1(v1), l2(v1), . . . , ln(v1)) = (1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, 4, 4, . . . , 4),

where the number of k is m, k = 1, 2, 3, 4.
Step 2: Suppose that the label of vi is (l1(vi), l2(vi), . . . , ln(vi)), define the

label of vi+1 as follows:

(l1(vi+1), l2(vi+1), . . . , ln−1(vi+1), ln(vi+1)) = (l2(vi), l3(vi), . . . , ln(vi), l1(vi)).

By this definition we have lj (vi)∈{1, 2, 3, 4}, where i= 1, 2, . . . , n, j=1, 2, . . . , n.

Obviously, all labels are different, there exists an arc from vi to vi+1, where
i= 1, 2, . . . , n− 1. Since

(l1(vn), l2(vn), . . . , ln(vn)) = (4, 1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, 4, 4, . . . , 4),

(l1(v1), l2(v1), . . . , ln(v1)) = (1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, 4, 4, . . . , 4),

we know that there is an arc from vn to v1.
Suppose there exists an arc from vi to vj . Let the label of vi be

(l1(vi), l2(vi), . . . , ln(vi)).

Thus, the label of vj is

(l2(vi), l3(vi), . . . , ln(vi), ln(vj )).
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By the symmetry of 1, 2, 3 and 4, without loss of generality, let l1(vi) = 1. By
step 1 and step 2 we know that in every label of vertex the number of k is m,
thus, ln(vj ) = 1 = l1(vi). Since we have proved that all the labels are different,
and the label of vi+1 is

(l2(vi), l3(vi), . . . , ln(vi), l1(vi)),

we know that j = i+1. Thus, there exists an arc from vi to vi+1 only. Therefore,
Cn is a DNA graph, where n = 4m.

Case 2. Suppose n �≡ 0 (mod 4). Define the label of vi as follows:

lj (vi) =
{

i + j (mod 4), if i + j � n,

i + j − n(mod 4), if i + j > n,

where i = 1, 2, . . . , n; j = 1, 2, . . . , n.

It is easy to see that lj (vi)∈ {1, 2, 3, 4}, where i= 1, 2, . . . , n, j = 1, 2, . . . , n.

Assume that there exist two vertices vi and vi+p such that

(l1(vi), l2(vi), . . . , ln(vi)) = (l1(vi+p), l2(vi+p), . . . , ln(vi+p)),

where 1 � p � n− i. Thus, ln(vi) = ln(vi+p) (mod 4), that is, i ≡ i + p (mod 4),
we have 4|p.

Similarly, ln+1−p−i(vi+p) = ln+1−p−i(vi) (mod 4), that is, 1 ≡ n+ 1−p (mod
4). Because we have proved that 4|p, we have 4|n, which contradicts with n �≡ 0
(mod 4). Hence, all labels are different.

By the definition of lj (vi), we have

(l2(vi), l3(vi), . . . , ln(vi)) = (l1(vi+1), l2(vi+1), . . . , ln−1(vi+1)).

Hence, there exists an arc from vi to vi+1, where 1 � i � n− 1.

Similarly, the label of vn is as follows:

(l1(vn), l2(vn), . . . , lt (vn), . . . , ln(vn)) = (1, 2, . . . , t (mod 4), . . . , n(mod 4)),

the label of v1 is as follows:

(l1(v1),l2(v1),...,lt−1(v1),...,ln−1(v1),ln(v1))=(2,3,...,t (mod 4),...,n(mod 4),1).

By definition 2.2 there is an arc from vn to v1.
Suppose there is an arc from vi to vj , let the label of vi be (l1(vi), l2(vi),

. . . , ln(vi)). By definition 2.2 the label of vj is as follows: (l2(vi), . . . , ln(vi), ln(vj )).

By mathematical induction and the definition of lj (vi) defined above, we know
that the number of i ′s in every label of vertex is constant, where i = 1, 2, 3, 4.

Thus, ln(vj ) = l1(vi). Therefore, the label of vj is as follows:

(l2(vi), . . . , ln(vi), l1(vi)),
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which is the label of vi+1. Because we have proved that all labels are different,
we obtain j = i + 1. Hence, Cn is a DNA graph. By theorem 3.1 the theorem
follows.

The following theorem is clear.

Theorem 3.5. Let D be a directed graph, a = (u, v) ∈ A(D), D′ be the adjoint of
D, we have

d+D(v) = d+D′(a), d−D(u) = d−D′(a).

By Theorem 3.5 we have the following corollary.

Corollary 3.6. Let D′ be the adjoint of D, we have

�+(D) � �+(D′), �−(D) � �−(D′),
δ+(D) � δ+(D′), δ−(D) � δ−(D′),

where �+(D) stands for the maximum outdegree of D, �−(D) stands for the
maximum indegree of D, δ+(D) stands for the minimum outdegree of D, δ−(D)

stands for the minimum indegree of D. Similar meanings for D′.

Theorem 3.7. The connected self-adjoints are An and
←
An, where An is defined in

definition 2.7,
←
An is defined in definition 2.8.

Proof. Claim 1. If D is self-adjoint, we have

|V (D)| = |A(D)|.
In fact, let D′ be the adjoint of D, we have

|V (D′)| = |A(D)|.
Because D′ is isomorphic to D, we have

|V (D′)| = |V (D)|.
Hence,

|V (D)| = |A(D)|.
The claim holds.

Since D is connected, we know that the underlying graph of D contains a
spanning tree T . Because |E(T )| = |V (D)| − 1, we have

|E(T )| = |A(D)| − 1.
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Thus, the underlying graph of D contains a unique cycle v1v2, . . . , vp with sub-
trees T (v1), T (v2), . . . , T (vp), where T (vj ) is a subtree rooted at vj and

V (T (vj )) ∩ {v1, v2, . . . , vp} = {vj },
where j = 1, 2, . . . , p.

Claim 2. Let T ′(vj ) be the adjoint of T (vj ), then the underlying graph of
T ′(vj ) contains no cycle.

Otherwise, suppose there exists a cycle C ∈ T
′
(vj ), for every vertex a ∈ C,

by Definition 2.5 vertex a corresponds to an arc (u, v) ∈ A(T (vj )), in this way
along the cycle C ∈ T

′
(vj ) we find a cycle in the underlying graph of T (vj ),

which is a contradiction.
Claim 3. D contains a unique directed cycle (v1, v2, . . . , vp).

By contradiction. Suppose the underlying graph of D contains a unique
cycle v1v2, . . . , vp which is not a directed cycle. Without loss of generality, let
a1 = (v1, v2), a2 = (v3, v2). By definition 2.5 we have

(a1, a2) �∈ A(D′), (a2, a1) �∈ A(D′).

Hence, there is no cycle in the underlying graph of D
′

formed by the arcs in the
unique cycle v1v2, . . . , vp of D.

Because D′ is isomorphic to D and D contains a unique cycle, then D′ must
contain a unique cycle. By claim 2 and the above analysis, we know that the
unique cycle in D′ must be formed by some arcs from some T (vj )s and some
arcs of the unique cycle v1v2, . . . , vp ∈ D. Let C be the unique cycle v1v2, . . . , vp

in the underlying graph of D.
Case 1. Suppose D contains ai = (vi, vi+1)∈C, ai−1= (vi−1, vi)∈C, b1=

(x1, vi)∈ T (vi), b2= (vi, x2)∈ T (vi). By definition 2.5 we have

(b1, ai) ∈ D′, (b1, b2) ∈ D′, (ai−1, b2) ∈ D′, (ai−1, ai) ∈ D′.

Hence, the underlying graph of D′ contains a unique cycle b1aiai−1b2. Since D′

is isomorphic to D, we know that 4-cycle b1aiai−1b2 ∈D′ must be isomorphic to
the unique cycle C ∈D. Because C ∈D contains a directed 3-path (vi−1, vi, vi+1),

4-cycle b1aiai−1b2 ∈D′ contains no directed 3-path, which is a contradiction.
Case 2. Suppose there exist ai = (vi, vi+1)∈C, ai−1 = (vi, vi−1) ∈ C,

b1= (x1, vi)∈ T (vi), b2 = (vi, x2) ∈ T (vi), then the underlying graph of D′ con-
tains no cycle formed by ai , ai−1, b1 and b2.

If there were ai = (vi, vi+1) ∈ C, ai−1 = (vi, vi−1) ∈ C, b1 = (x1, vi) ∈ T (vi),
b2 = (vi, x2) ∈ T (vi), b3 = (x3, vi) ∈ T (vi), by definition 2.5 there would be at
least two cycles in the underlying graph of D′: b3aib1ai−1 and b3aib1b2. Because
the underlying graph of D contains exactly one cycle, we know that D′ cannot
be isomorphic to D, which is a contradiction.

If there were ai = (vi, vi+1) ∈ C, ai−1 = (vi, vi−1) ∈ C, b1 = (x1, vi) ∈ T (vi),

b2 = (vi, x2) ∈ T (vi), b4 = (vi, x4) ∈ T (vi), we can discuss similarly.
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Case 3. Suppose m = 0 or k = 0 for every Svi,m,k, where Svi,m,k is defined in
definition 2.7.

Because the cycle C of D is not a directed cycle, we know that the unique
cycle in the underlying graph of D′ must contain some vertices formed from arcs
of T (vi) ∈ D and all arcs of C ∈ D. Thus, the cycle in the underlying graph of
D′ would be longer than the cycle in the underlying graph of D, which is a con-
tradiction. Thus, D′ can not be isomorphic to D, which is a contradiction. claim
3 holds.

By claim 3 we denote a1= (v1, v2), a2= (v2, v3), . . . , aj = (vj , vj+1), . . . ,

ap= (vp, v1). By the definition of subtree T (vj ) in this proof, we know that T (vj )

is constructed recursively as follows:
Step 1: Svj ,mj ,ij ⊆ T (vj ), where Svj ,mj ,ij is defined in definition 2.7, mj � 0,

ij � 0, vj is the vertex of directed cycle (v1, v2, . . . , vp).

In fact, there must be mj = 0 or ij = 0. Otherwise, suppose mj � 1 and
ij � 1. Without loss of generality, let aj1j = (xj1, vj )∈ T (vj ) and ajj1= (vj , yj1)∈
T (vj ). By definition 2.5 we know that there are two cycles in the underlying
graph of D′: a1a2, . . . , ap and aj1j ajaj−1ajj1. By claim 3 we know that D can-
not be isomorphic to D′, which is a contradiction.

Step 2: For every u ∈ T (vj ), if d+(u) = 1 and d−(u) = 0 or d−(u) = 1 and
d+(u) = 0, we paste Su,m,i at u of T (vj ), where m � 0, i � 0, V (Su,m,i)∩V (D) =
{u}.

Claim 4. In step 2, if d−(u) = 1 with d+(u) = 0, and Su,m,i is pasted to
T (vj ) at u, i �= 1, we have m = 0.

Case 1. Suppose i = 0. If m � 1, then the underlying graph of D′ is dis-
connected, which is a contradiction. Hence, m = 0.

Case 2. Suppose i � 2. If m � 1, there exist b1= (x, u)∈ Su,m,i , b2= (u, y1)∈
Su,m,i , b3= (u, y2)∈ Su,m,i . Since d−(u) = 1, there exists b= (v, u) ∈ T (vj ). Thus,
in the underlying graph of D′ there are two cycles: bb2b1b3 and a1a2, . . . , ap,
which contradicts with claim 3. Hence, m= 0. Claim 4 holds.

Similarly, we have
Claim 5. In step 2, if d+(u) = 1 with d−(u) = 0, and Su,m,i is pasted to

T (vj ) at u, m �= 1, we have i = 0.

Define

dD(Su,m,i → u) =
∑

v∈Su,m,i

dD(u, v) = m+ i,

dD(T (vj )→ C) =
∑

v∈T (vj )

dD(v, vj ),

dD(T → C) =
∑
vj∈C

dD(T (vj ), C),

where C is the unique directed cycle (v1, v2, . . . , vp) ∈ D, C ∩ T (vj )={vj },
dD(x, y) is the distance between vertices x and y in the underlying graph of D.
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Similarly, we define dD′(S
′
a,m,i → a), dD′(T (aj ) → C ′) and dD′(T

′ → C ′),
where C ′ is the unique cycle (a1, a2, . . . , ap) in D′, T ′ =D′ − {(a1, a2), (a2, a3), . . . ,

(ap, a1)}.
Claim 6. If D contains one of the following cases: (1). d−(u)= 1 with

d+(u) = 0, and Su,m,i ⊆ T (vj ), where i= 1, m � 1. (2). d+(u)= 1 with d−(u)= 0,
and Su,m,i ⊆ T (vj ), where m = 1, i � 1, we have

dD(T → C) < dD′(T
′ → C ′).

In fact, let V (Su,m,i) = {u, x1, x2, . . . , xm, y1, y2, . . . , yi},
A(Su,m,i) = {ax1, ax2, . . . , axm, ay1, ay2, . . . , ayi}, where axk = (xk, u), ayh = (u, yh),

1 � k � m, 1 � h � i.

Suppose d−(u) = 1 with d+(u) = 0, and Su,m,i ⊆ T (vj ). Because d−(u) = 1,
there exists an arc a = (v, u) ∈ D. Let Su,m,i ∈ D correspond to S ′a,m,i ∈ D′ :

V (S ′a,m,i) = {a, ax1, . . . , axm, ay1, . . . , ayi},
A(S ′a,m,i) = {(a, ay1), . . . , (a, ayi), (ax1, ay1)

, . . . , (ax1, ayi), . . . , (axm, ay1), . . . , (axm, ayi)}
When i �= 1, by claim 4 we have m = 0. It is easy to see that

dD(Su,m,i → u) = dD′(S
′
u,m,i → a).

When i = 1, it is easy to see that

dD(Su,m,i → u) < dD′(S
′
a,m,i → a).

Similarly, suppose d+(u) = 1 with d−(u) = 0, and Su,m,i ⊆ T (vj ).

When m �= 1, we have

dD(Su,m,i → u) = dD′(S
′
a,m,i → a).

When m = 1, we have

dD(Su,m,i → u) < dD′(S
′
a,m,i → a).

Because we have proved that T (vj ) is constructed by Su,m,i recursively in steps 1
and 2, T is composed by T (vj ) adhered to a cycle C = (v1, v2, . . . , vp), it follows
that

dD(T → C) < dD′(T
′ → C ′).

Hence, claim 6 holds.
By claims 4–6 we know that T (vj ) is consisted either by some Su,m,0 com-

pletely or by some Su,0,i completely. Thus, if we know the structure of Svj ,mj ,ij ,

where vj is a vertex of cycle C= (v1, v2, . . . , vp), the structure of T (vj ) is known.
Hence, for simplicity, in the following we assume that D is composed as follows:
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(1) A directed cycle (v1, v2, . . . , vp).

(2) T (vj ) = Svj ,mj ,ij , where j = 1, 2, . . . , p.

Claim 7. For every Svj ,mj ,ij , we have mj=0 or ij=0, where j=1, 2, . . . , p.

In fact, we have proved this claim in step 1 following claim 3.
By claim 7 we know that D is composed as follows:
A directed cycle Cp= (v1, v2, . . . , vp) patched at vertex vj with T (vj ),

j = 1, 2, . . . , p, where T (vj ) = Svj ,mj ,0 or T (vj ) = Svj ,0,ij . Denote a1= (v1, v2),

a2= (v2, v3), . . . , ap = (vp, v1). Let T (vk) ∈ D, define the distance between T (vk)

and T (vj ) as follows:

d(T (vk), T (vj );D) = min{|k − j |, p − |k − j |}.

Then,

d(T (vk), D) =
∑

vj∈Cp

d(T (vk), T (vj );D).

d(D) =
∑

vk∈Cp

d(T (vk), D).

Similarly, we define d(T (ak), T (aj );D′), d(T (ak), D
′) and d(D′). Because T (vj )=

Svj ,mj ,0 ∈ D is isomorphic to T (ai) ∈ D′, for convenience, we use T (vj ) to replace
T (ai) ∈ D′. Similarly, when ij �= 0 we use T (vj )=Svj ,0,ij ∈ D to replace T (ai−1) ∈
D′; when ij=0 we use T (vj )=Svj ,0,ij ∈ D to replace T (ai)∈D′.

By definition 2.5, the following claim is clear.
Claim 8.

(1). If T (vk) = Svk,mk,0, T (vj ) = Svj ,0,ij , ij �= 0, then,

d(T (vk), T (vj );D) =
{

d(T (vk), T (vj );D′), if 2|k − j | = p + 1,

d(T (vk), T (vj );D′)+ 1, otherwise.

(2). If T (vk) = Svk,mk,0, T (vj ) = Svj ,mj ,0, then

d(T (vk), T (vj );D) = d(T (vk), T (vj );D′).

(3). If T (vk) = Svk,0,ik , T (vj ) = Svj ,0,ij , then

d(T (vk), T (vj );D) = d(T (vk), T (vj );D′).

By claim 8 the following claim is obvious.
Claim 9. If there are T (vl) = Svl,ml,0 ∈ D and T (vj ) = Svj ,0,ij ∈ D, where

ml � 1, ij � 1, we have

d(T (vk), D) � d(T (vk), D
′).



J. Hao / The adjoints of DNA 345

Especially, for k = |l − j | +min{l, j} − 1, we have

d(T (vk), D) � d(T (vk), D
′)+ 1.

Claim 10. Let D′ be the adjoint of D. If D is self-adjoint, then D must be

An or
←
An.

Otherwise, suppose T (vl) = Svl,ml,0 ∈ D and T (vj ) = Svj ,0,ij ∈ D, where
ml � 1, ij � 1. By claim 9 we have

d(D) > d(D′).

Thus, D can not be isomorphic to D′, which is a contradiction. Claim 10
holds.

Claim 11. An is self-adjoint, where An is defined in definition 2.7.
We use mathematical induction to prove this claim.

(1). Suppose n= 0, A0=Cp. Let V (Cp)={v1, v2, . . . , vp}, A(Cp)={a1,

a2, . . . , ap}, where ai = (vi, vi+1), i= 1, 2, . . . , p.

We define two mappings from A0 to A′0 as follows:

f0 : V (A0)→ V (A′0),
vi → ai.

g0 : A(A0)→ A(A′0),
ai → (ai, ai+1),

where i = 1, 2, . . . p. It is easy to see that f0 and g0 are two bijections.
Hence, A0 is self-adjoint.
Similarly, we can prove that A1 is self-adjoint.

(2). Suppose At is self−adjoint, where t � 1. That is, there exist two bijec-
tions ft : V (At)→ V (A′t ) and gt : A(At)→ A(A′t ).

Now we consider At+1. We define two mappings ft+1 and gt+1 as follows:
At first, let ft+1|At

= ft , gt+1|At
= gt .

Second, by definition 2.7 we paste Su,m,0 to At for every vertex u∈V (At)

with d+At
(u)= 1 and d−At

(u)= 0. Let a= (u, v) ∈ A(At), V (Su,m,0)={u, x1, x2, . . . ,

xm}, A(Su,m,0)={ax1u, ax2u, . . . , axmu}, where axiu= (xi, u), i= 1, 2, . . . , m.
We define ft+1|Su,m,0 : V (Su,m,0)→V (S ′u,m,0) and gt+1|Su,m,0 : A(Su,m,0) →

A(S ′u,m,0) as follows:

ft+1|Su,m,0 : xi → axiu, u→ a,

gt+1|Su,m,0 : axiu→ (axiu, a),

where i = 1, 2, . . . , m.
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It is easy to see that ft+1 and gt+1 are two bijections from At+1 to A′t+1.
Hence, An is self-adjoint.

Similarly, we can prove that
←
An is self-adjoint. The theorem follows.
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